

Technical Specification

Metrobit MPESL233 All-in-one Cabinet

Contents

1.	Abbre	eviations	1
2.		em Design	
	2.1	Scope of Supply	2
	2.2	All-in-one Cabinet Specification	3
	2.3	BESS Topologic	
3.	Batte	ery System	5
	3.1	Battery Cell	5
	3.2	Battery Module	5
	3.3	All-in-one Cabinet	6
	3.4	Battery Management System	7
	3.4.1	Overview	7
	3.4.2	Multi-level BMS Function	8
4.	Auxil	liary Equipment	8
	4.1	AC Panel	8
	4.2	Integrated PCS	8
	4.3	Thermal Management System	10
	4.3.1	Equipment Cooling Design	10
	4.4	Fire Suppression and Alarm System Design	11
	4.4.1	Description	11
	4.4.2	Main Equipment List of FSS	11
	4.4.3	Fire Suppression System Work Flow	12
	4.4.4	Control logic	12

1. Abbreviations

Table 1-1 Abbreviations

No.	Abbreviations	Full Name		
1	AC	Alternating Current		
2	BAT	Battery		
3	BESS	Battery Energy Storage System		
4	BOS	Balance of System		
5	BMS	Battery Management System		
6	вми	Battery Management Unit		
7	BCU	Battery Cluster Management Unit		
8	BAMS	Battery Administration Management System		
9	BAU	Battery Administration Management Unit		
10	ВОР	Balance of Plant		
11	BOL	Beginning of Life		
12	DC	Direct Current		
13	EMS	Energy Management System		
14	EOL	End of Life		
15	FSS	Fire Suppression System		
16	НМІ	Human Machine Interface		
17	HV	High Voltage		
18	HVAC	Heating & Ventilation and Air Conditioning		
19	LFP	Lithium iron phosphate		
20	MV	Middle Voltage		
21	PCS	Power Conversion System		
22	POC	Point of Connection		
23	SOC	State of Charge		
24	SOH	State of Health		
25	UPS	Uninterruptable Power Supply		

2. System Design

This system adopts the all-in-one outdoor cabinet with BESS and inverter system, which contains LFP battery: intelligent battery management system, the group technology and integrated PCS. Metrobit can supply safe, reliable, stable power supply solutions, to provide comprehensive highly quality energy.

2.1 Scope of Supply

Metrobit will offer solutions for the requirements as below:

- 1) Storage batteries;
- 2) BMS;
- 3) Liquid cooling unit;
- 4) Fire suppression system;
- 5) Integrated PCS;
- 6) AC Panel;
- 7) All-in-one cabinet.

Table 2-1 List of Supply Scope

Equipment	Specification and Models	Unit	Qty.	Remark
Battery Module Type		pcs	5	
Battery Strings	832V 280Ah system	set	1	With racks and BMS
All-in-one Cabinet	Outdoor cabinet	set	1	
Liquid Unit	3kW cooling capacity	unit	1	
FSS	Aerosol	set	1	
Integrated PCS	Metis 125 (M125-UL) / Metis 100 Series (M-100-E-IEC)	set	1	Two types of PCS: UL and CE certificate
AC Panel	Auxiliary power distribution	unit	1	

2.2 All-in-one Cabinet Specification

Table 2-2 MPESL233 All-in-one Cabinet Specification

Items			Unit	Parameters		
		Cell Configuration	-	1P260S		
		Rack Qty.		1		
		Rated Voltage		832		
		Work Voltage Range	V	728 ~ 936		
		Rated Energy	kWh	232.9		
		Allowed C-rate	1	0.5C		
		Cooling Type	ı	Liquid		
		Dimension (W × D × H)	mm	1000 × 1350 × 2400		
		Weight	kg	~2700		
BESS		Temp. Difference	°C	≤5		
BLSS		AC RTE	%	≥88%		
		Lifespan	years	20		
		IP Grade	-	IP55 (Battery Room)		
		FSS Type	-	Aerosol		
		COM Port/Protocol	-	Modbus TCP/IP		
		Recommended Storage Temp. Range	°C	15 ~ 30		
		Operation Ambient Temp. Range		-30 ~ 55		
		Relative Humidity		0 ~ 95%		
		Certificates		IEC62619, UL9540A, UL9540, UN3536		
		System Operation Mode	-	On/Off-grid mode (manual switch)		
		PCS Model No.	-	Metis 125 (M125-UL)	Metis 100 Series (M-100-E-IEC)	
	ıral	Compliance	-	UL	CE	
PCS	General	Rated Input / Output Power	kW	125	100	
		Max. Operating Current	Α	184	158	
		Certificates	-	IEC62477-1, UK: G99/1 Low Voltage Directive 2 IEC61000-6-2, IEC6100	014/35/EU,	

Items			Unit	Parameters						
	þí	Rated. Output Power	kVA	125	100					
	necte	Max. AC Current	Α	160						
	AC Grid-connected	Rated Grid Voltage		277/480Vac, 3W+N+PE or 3W+PE	230/400Vac, 3W+N+PE or 3W+PE					
	AC G	Frequency	Hz	60	50 / 60					
DCC	1	Power Factor Range		-1+1						
PCS	AC Off-grid	Output Voltage	-	277/480Vac, 3W+N+PE or 3W+PE	230/400Vac, 3W+N+PE					
		f-gric	f-gric	f-gric	f-gric	f-gric	f-gri	Rated. Output Power	kVA	125
	c of	Max. AC Current	Α	150 (linear load) / 100 (ı	nonlinear load)					
	V	Frequency	Hz	60	50 / 60					
		Max. Allowable Crest Factor	-	2.5						

2.3 BESS Topologic

The BESS topological drawing shows the design of BESS and how the AC, DC, and control sections are interconnected. In this all-in-one cabinet, one battery bank is made up with one battery rack and one PCS. Several combinations of PCS and battery system establish the whole BESS, the maximum number of parallel all-in-one cabinets on grid is 5.

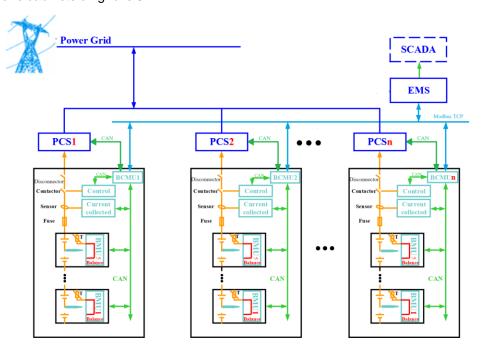


Figure 2-1 BESS Topological Drawing (For reference)

3. Battery System

3.1 Battery Cell

Battery cell, the basic unit of lithium iron phosphate battery, consists of positive, negative electrodes and electrolyte, with rated voltage of 3.2V and rated capacity of 280Ah. Adopts advanced LFP chemistry batteries, enjoying low cost, high efficiency and reliability as well as industry-leading safety technology. The battery cell is sealed in aluminum enclosure as shows in the following picture.

Table 3-1 Specification of Battery Cell

Item	Unit	Specification	Rendering
Battery Chemistry	-	LFP	
Nominal Capacity	Ah	280Ah	
Nominal Energy	Wh	896	
Nominal Voltage	V	3.2	
Operating Voltage	V	2.50 ~ 3.65	100
Dimension (WxDxH)	mm	174 × 72 × 207	10 A
Weight	kg	~5.5	
Recommended C-Rate	-	0.5C	
Certificate	-	UL9540A, IEC62619, UN38.3	(For reference)

3.2 Battery Module

A battery module consists of a number of cells in a manner of 1P52S, with rated voltage of 166.4V and rated capacity of 280Ah. The battery module and BMS adopt unified standard modular design to ensure the universality of the system. Flexible configuration, multiple battery modules can be in serial for expanding voltage and capacity.

Table 3-2 Specification of Battery Module

Item	Unit	Specification	Rendering
Type No.	-		
Module Configuration	-	1P52S	
Module Capacity	Ah	280	
Energy	kWh	46.59	
Nominal Voltage	V	166.4	

Item	Unit	Specification	Rendering
Operating Voltage	V	145.6 ~ 187.2	(For reference)
Dimension (WxDxH)	mm	760 × 1150 × 237	
Weight	kg	~340	
Recommended C-Rate	-	0.5C	
Certificate	-	UL9540A, IEC62619, UN38.3	

3.3 All-in-one Cabinet

A number of modules and integrated PCS are connected in series through electrical connectors, delivers high voltage up to 832V in rated voltage and 280Ah in rated capacity. Each battery rack contains 5 modules, 1 liquid cooling unit, 1 set of AC panel and 1 set of FSS and 1 integrated PCS.

Table 3-3 Specification of Battery Cabinet

Item	Unit	Specification	Rendering
Configuration	1	1P260S	
Capacity	Ah	280	
Energy	kWh	232.9	0 💹
Nominal Voltage	V	832	
Operating Voltage	>	728 ~ 936	
Dimension (W × D × H)	mm	1000 × 1350 × 2400	•
Weight	kg	~2700	are-
Enclosure Rating	1	IP55 (Battery Room)	
Operating Temperature Range	°C	-30 ~ 55	
Recommended C-Rate	-	0.5C	
Noise Level	-	≤75dB @1m	
Anti-corrosion Grade	-	C4	
FSS	-	Smoke & temperature sensor; sound & light alarm; aerosol; deflagration panel; water inlet	(For reference)

3.4 Battery Management System

3.4.1 Overview

BMS collects, processes and stores the important information during the operation of the battery module in real time, and exchanges the information with the external equipment to give real-time alarm and protection during the operation of the battery module. BMS generally adopts multi-level distributed architecture design. For two-level architecture, BMS system is composed of module level BMU, rack level BCMU. Then BCMU directly communicate with PCS with CAN protocol. The overall control and communication diagram is shown as below:

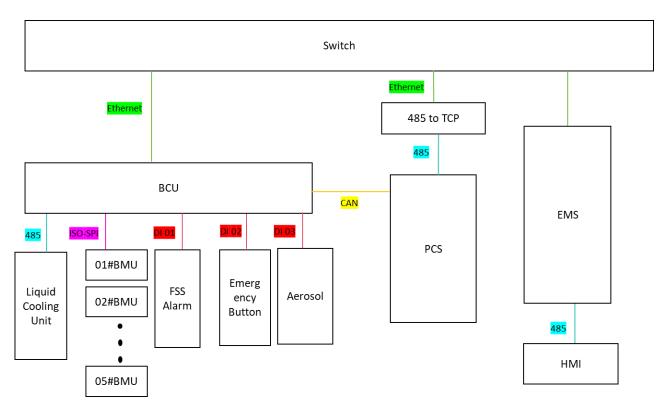


Figure 3-1 BMS Communication Diagram (For reference)

3.4.2 Multi-level BMS Function

Table 3-4 Multi-level BMS Function (For reference)

BMS Level	Main Function	Description	
	Pagia bardurara configuration	Cell voltage sampling	
	Basic hardware configuration	Temperature sampling	
	Battery cell management	Active equalization	
BMU	Information management	Communication with BCMU	
		Leakage detection	
	Failure diagnosis	MSD switch detection	
		Fire suppression detection	
	Rottory status campling	Total rack voltage sampling	
	Battery status sampling	Insulation resistance sampling	
	Thermal management	Temperature alarm signals	
	Estimation of battony status	Estimation of SOC	
	Estimation of battery status	Estimation of SOH	
BCMU	Failure diagnosis	Battery failure diagnosis alarm	
	Failure diagnosis	BMS system self-check and fault diagnosis alarm	
		Software upgrade	
	Information management	Communication with BMU	
		Communicate with PCS, EMS and other equipment	
	Data storage	Data storage, transmission and processing	

4. Auxiliary Equipment

4.1 AC Panel

AC panel works as an important device for auxiliary power supply.

- a) Power source of Liquid cooling unit, FSS, BMS, etc.;
- b) With UPS minimum 15 minutes time as backup power supply;
- c) Protection function with main circuit breaker and E-stop circuit systems.

4.2 Integrated PCS

The DC port of the energy storage inverter is connected to the energy storage battery, and the AC port is connected to the three-phase AC power grid or load. When the battery is discharged, the energy storage inverter converts the DC current of the energy storage battery into three-phase AC power supply for the load or into the power grid. When the battery is charged, the energy storage inverter rectifies the AC current of the

three-phase power grid into DC to charge the energy storage battery. The structure diagram of the energy storage converter is shown as follows:

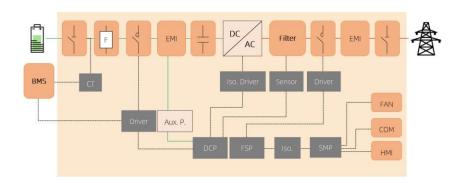


Figure 4-1 System Connection Schematic Diagram

The specification of PCS interface is shown in the table below.

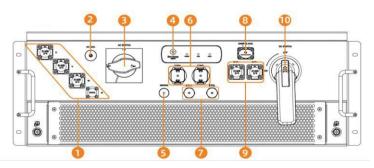


Figure 4-2 PCS Interface

Table 4-1 PCS Interface Specification

No.	Printing	Name	Note
1	AC (U/V/W/N)	Connector of grid	AC input wiring
2	AC AUX.	AUX. Mains interface	Output wiring for AC loads in energy storage cabinets power supply
3	AC SWITCH	Ac plastic case switch	Connection switch to the grid
4	/	Display panel	Display machine status
5	WIFI/4G	WIFI/4G interface	External communication and dry contact
6	COM1.COM2.	Communication and dry contact interface	Ethernet Communication cables (not supported)
7	ETH1.ETH2.	Ethernet interface (not supported)	For battery string voltage sampling and DC load power supply
8	SAMP&AUX.	Battery voltage sampling and DC auxiliary supply interface	For battery string voltage sampling and DC load power supply
9	BAT+, BAT	Battery interface	DC input wiring
10	DC SWITCH	Dc disconnecting switch	Connection switch to the battery

4.3 Thermal Management System

The system uses a liquid cooling system for heat dissipation. Liquid cooling is a technology that uses a liquid as a coolant to remove heat from the heated parts. It has good temperature homogeneity. The liquid cooling system mainly consists of pipes, pumps, heat exchangers and compressors. The main coolant of the system is ethylene glycol and water.

4.3.1 Equipment Cooling Design

Inside the cabinet, there are module-level cooling branch pipelines, which supports thermal management with inlet and outlet ports correspondingly. The coolant is sent to modules by the pumper from the rack pipe. After absorbing the heat generated by the battery, it returns to the cooling unit. Meanwhile, when the system reaches thermal balance, the cabinet maximum temperature difference can be controlled within 5 °C. The temperature simulation results are shown as follows.

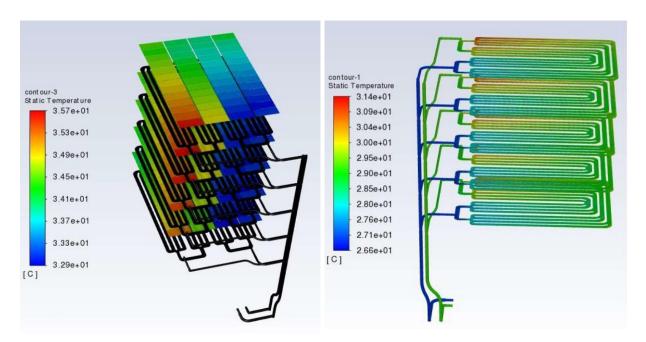


Figure 4-3 Cell Temperature Distribution Cloud Map (For reference)

4.4 Fire Suppression and Alarm System Design

4.4.1 Description

The fire suppression system of energy storage cabinet is composed of automatic fire alarm system, aerosol extinguishing system, deflagration panel and water inlet. Automatic fire alarm and aerosol extinguishing system consists of temperature sensor, smoke sensor, sound and light alarm, aerosol extinguishing system. The deflagration panel is installed on the top of the cabinet and the sprinkler inlet is equipped on the back of the cabinet.

Note that, this fire system design is just for reference, and should be redesigned or modified at system design stage.

4.4.2 Main Equipment List of FSS

Table 4-2: Main Equipment List of FSS (For reference)

No	Components	Qty.	Location	Note
1	Smoke Sensor	1	Inside the cabinet	Detect the smoke concentration in the cabinet and send the alarm to the alarm controller when there is an alarm value
2	Temperature Sensor	1	Inside the cabinet	Detect the ambient temperature in the cabinet and sends an alarm to the alarm controller when there is an alarm value
3	Sound and Light Alarm	1	Outside the cabinet	Provide sound and light alarm when multiple alarms of smoke and temperature are given
4	Aerosol Extinguishing System	1	Inside the cabinet	Spray aerosol to protect the cabinet with full flood extinguishing
5	Deflagration Panel	1	Top of the cabinet	The deflagration panel will rupture when the pressure reaches a designed value, releasing the explosion pressure to the top of the cabinet.
6	Water Inlet	1	The back of the cabinet	Manually connect the DN65 water pipe connector to the back of cabinet water inlet

4.4.3 Fire Suppression System Work Flow

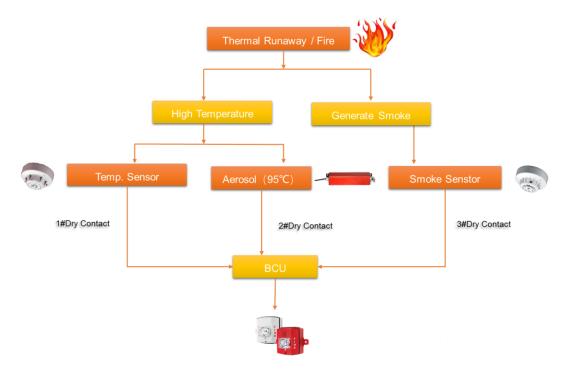


Figure 4-4 Fire Suppression System Work Flow (For reference)

4.4.4 Control logic

- a) If smoke sensor is triggered, the Sound & Light Alarm will start.
- b) If temperature sensor is triggered, the Sound & Light Alarm will start. And if the temperature reaches 95 °C, the fixed aerosol fire extinguishing system will be activated.

Metrobit FZCO

Warehouse No. FZS5AA05, South Zone 5, Jebel Ali Free Zone, Dubai, UAE

TEL:+971 4 8809093 FAX:+971 4 8807076

info@metrobitcorp.com

www.metrobitcorp.com